Funnel-structured cascade for multi-view face detection with alignment-awareness
نویسندگان
چکیده
Multi-view face detection in open environment is a challenging task due to diverse variations of face appearances and shapes. Most multi-view face detectors depend on multiple models and organize them in parallel, pyramid or tree structure, which compromise between the accuracy and time-cost. Aiming at a more favorable multi-view face detector, we propose a novel funnel-structured cascade (FuSt) detection framework. In a coarse-to-fine flavor, our FuSt consists of, from top to bottom, 1) multiple view-specific fast LAB cascade for extremely quick face proposal, 2) multiple coarse MLP cascade for further candidate window verification, and 3) a unified fine MLP cascade with shape-indexed features for accurate face detection. Compared with other structures, on the one hand, the proposed one uses multiple computationally efficient distributed classifiers to propose a small number of candidate windows but with a high recall of multi-view faces. On the other hand, by using a unified MLP cascade to examine proposals of all views in a centralized style, it provides a favorable solution for multiview face detection with high accuracy and low time-cost. Besides, the FuSt detector is alignment-aware and performs a coarse facial part prediction which is beneficial for subsequent face alignment. Extensive experiments on two challenging datasets, FDDB and AFW, demonstrate the effectiveness of our FuSt detector in both accuracy and speed.
منابع مشابه
Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملJoint Cascade Face Detection and Alignment
We present a new state-of-the-art approach for face detection. The key idea is to combine face alignment with detection, observing that aligned face shapes provide better features for face classification. To make this combination more effective, our approach learns the two tasks jointly in the same cascade framework, by exploiting recent advances in face alignment. Such joint learning greatly e...
متن کاملImproved Face Detection and Alignment using Cascade Deep Convolutional Network
Real-world face detection and alignment demand an advanced discriminative model to address challenges by pose, lighting and expression. Recent studies have utilized the relation between face detection and alignment to make models computationally efficiency, but they ignore the connection between each cascade CNNs. In this paper, we combine detection, calibration and alignment in each Cascade CN...
متن کاملReal - Time Multi - View Face Detection , Tracking , Pose Estimation , Alignment , and Recognition ( Updated Dec 1 , 2001 )
We have developed a system based on technologies resulting from our recent research in multi-view face detection and tracking [1, 2], pose estimation [3], alignment [4, 5, 6], and recognition [7]; where multi-view means out-of-plane rotations in [0Æ; 180Æ] left-right (90 corresponding to the frontal view) and in 30Æ up-down. The system, whose structure is shown in Fig.1, takes gray level static...
متن کاملEmpirical analysis of cascade deformable models for multi-view face detection
In this paper, we present a face detector based on Cascade Deformable Part Models (CDPM) [1]. Our model is learnt from partially labelled images using Latent Support Vector Machines (LSVM). Recently Zhu et al. [2] proposed a Tree Structure Model for multi-view face detection trained with facial landmark labels, which resulted on a complex and suboptimal system for face detection. Instead, we ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 221 شماره
صفحات -
تاریخ انتشار 2017